635 research outputs found

    Electroporation by nucleofector is the best nonviral transfection technique in human endothelial and smooth muscle cells

    Get PDF
    BACKGROUND: The aim of this study was to determine the optimal non-viral transfection method for use in human smooth muscle cells (SMC) and endothelial cells (EC). METHODS: Coronary Artery (CoA) and Aortic (Ao) SMC and EC were transfected with a reporter plasmid, encoding chloramphenicol acetyltransferase type 1 (CAT), with seven different transfection reagents, two electroporation methods and a photochemical internalization (PCI) method. CAT determination provided information regarding transfection efficiency and total protein measurement was used to reflect the toxicity of each method. RESULTS: Electroporation via the nucleofector machine was the most effective method tested. It exhibited a 10 to 20 fold (for SMC and EC, respectively) increase in transfection efficiency in comparison to the lipofection method combined with acceptable toxicity. FuGene 6 and Lipofectamine PLUS were the preferred transfection reagents tested and resulted in 2 to 60 fold higher transfection efficiency in comparison to the PCI which was the least effective method. CONCLUSION: This study indicates that electroporation via the nucleofector machine is the preferred non-viral method for in vitro transfection of both human aortic and coronary artery SMC and EC. It may be very useful in gene expression studies in the field of vascular biology. Through improved gene transfer, non-viral transfer techniques may also play an increasingly important role in delivering genes to SMC and EC in relevant disease states

    The Endogenous Hallucinogen and Trace Amine N,N-Dimethyltryptamine (DMT) Displays Potent Protective Effects against Hypoxia via Sigma-1 Receptor Activation in Human Primary iPSC-Derived Cortical Neurons and Microglia-Like Immune Cells

    Get PDF
    N,N-dimethyltryptamine (DMT) is a potent endogenous hallucinogen present in the brain of humans and other mammals. Despite extensive research, its physiological role remains largely unknown. Recently, DMT has been found to activate the sigma-1 receptor (Sig-1R), an intracellular chaperone fulfilling an interface role between the endoplasmic reticulum (ER) and mitochondria. It ensures the correct transmission of ER stress into the nucleus resulting in the enhanced production of antistress and antioxidant proteins. Due to this function, the activation of Sig-1R can mitigate the outcome of hypoxia or oxidative stress. In this paper, we aimed to test the hypothesis that DMT plays a neuroprotective role in the brain by activating the Sig-1R. We tested whether DMT can mitigate hypoxic stress in in vitro cultured human cortical neurons (derived from induced pluripotent stem cells, iPSCs), monocyte-derived macrophages (moMACs), and dendritic cells (moDCs). Results showed that DMT robustly increases the survival of these cell types in severe hypoxia (0.5% O2) through the Sig-1R. Furthermore, this phenomenon is associated with the decreased expression and function of the alpha subunit of the hypoxia-inducible factor 1 (HIF-1) suggesting that DMT-mediated Sig-1R activation may alleviate hypoxia-induced cellular stress and increase survival in a HIF-1-independent manner. Our results reveal a novel and important role of DMT in human cellular physiology. We postulate that this compound may be endogenously generated in situations of stress, ameliorating the adverse effects of hypoxic/ischemic insult to the brain

    Human apoB contributes to increased serum total apo(a) level in LPA transgenic mice

    Get PDF
    Background The Lp(a) lipoprotein (Lp(a)) consists of the polymorphic glycoprotein apolipoprotein(a) (apo(a)), which is attached by a disulfide bond to apolipoprotein B (apoB). Apo(a), which has high homology with plasminogen, is present only in primates and hedgehogs. However, transgenic mice and rabbits with high serum apo(a) levels exist. Liver is the main site for apo(a) synthesis, but the site of removal is uncertain. To examine differences between transgenic mice expressing the LPA gene and mice capable of forming Lp(a) particles, LPA -YAC transgenic mice and hAPOB transgenic mice were crossed and their offspring examined. Results Comparison of LPA -YAC with LPA -YAC/hAPOB transgenic mice showed that LPA -YAC/hAPOB transgenic mice have higher serum total apo(a) and total cholesterol level than mice lacking the hAPOB gene. However, hepatic apo(a) mRNA level was higher in LPA -YAC transgenic mice than in LPA -YAC/hAPOB transgenic mice. Feeding of a high-cholesterol/high-fat diet to male LPA -YAC transgenic mice with or without the hAPOB gene resulted in reduced serum total apo(a) and hepatic apo(a) mRNA level. Conclusion In conclusion, the higher serum total apo(a) level in LPA -YAC/hAPOB transgenic mice than in LPA -YAC transgenic mice is not caused by increased apo(a) synthesis. Lower hepatic apo(a) mRNA level in LPA -YAC/hAPOB than in LPA -YAC transgenic mice may suggest that the increase in total apo(a) level is a result of apo(a) accumulation in serum. Furthermore, observed higher serum total cholesterol level in LPA -YAC/hAPOB transgenic mice than either in wild type or LPA -YAC transgenic mice may further suggest that human APOB transgenicity is a factor that contributes to increased serum total apo(a) and cholesterol levels. Our results on reduced serum total apo(a) and hepatic apo(a) mRNA levels in HCHF fed male LPA -YAC transgenic mice confirm earlier findings in females, and show that there are no sex difference in mechanisms for lowering apo(a) level in response to HCHF feeding

    The endogenous hallucinogen and trace amine N,N-dimethyltryptamine (DMT) displays potent protective effects against hypoxia via sigma-1 receptor activation in human primary iPSC-derived cortical neurons and microglia-like immune cells

    Get PDF
    N,N-dimethyltryptamine (DMT) is a potent endogenous hallucinogen present in the brain of humans and other mammals. Despite extensive research, its physiological role remains largely unknown. Recently, DMT has been found to activate the sigma-1 receptor (Sig-1R), an intracellular chaperone fulfilling an interface role between the endoplasmic reticulum (ER) and mitochondria. It ensures the correct transmission of ER stress into the nucleus resulting in the enhanced production of antistress and antioxidant proteins. Due to this function, the activation of Sig-1R can mitigate the outcome of hypoxia or oxidative stress. In this paper, we aimed to test the hypothesis that DMT plays a neuroprotective role in the brain by activating the Sig-1R. We tested whether DMT can mitigate hypoxic stress in in vitro cultured human cortical neurons (derived from induced pluripotent stem cells, iPSCs), monocyte-derived macrophages (moMACs), and dendritic cells (moDCs). Results showed that DMT robustly increases the survival of these cell types in severe hypoxia (0.5% O2) through the Sig-1R. Furthermore, this phenomenon is associated with the decreased expression and function of the alpha subunit of the hypoxia-inducible factor 1 (HIF-1) suggesting that DMT-mediated Sig-1R activation may alleviate hypoxia-induced cellular stress and increase survival in a HIF-1-independent manner. Our results reveal a novel and important role of DMT in human cellular physiology. We postulate that this compound may be endogenously generated in situations of stress, ameliorating the adverse effects of hypoxic/ischemic insult to the brain.publishedVersio

    Functional effects of schizophrenia-linked genetic variants on intrinsic single-neuron excitability: A modeling study

    Full text link
    Background: Recent genome-wide association studies (GWAS) have identified a large number of genetic risk factors for schizophrenia (SCZ) featuring ion channels and calcium transporters. For some of these risk factors, independent prior investigations have examined the effects of genetic alterations on the cellular electrical excitability and calcium homeostasis. In the present proof-of-concept study, we harnessed these experimental results for modeling of computational properties on layer V cortical pyramidal cell and identify possible common alterations in behavior across SCZ-related genes. Methods: We applied a biophysically detailed multi-compartmental model to study the excitability of a layer V pyramidal cell. We reviewed the literature on functional genomics for variants of genes associated with SCZ, and used changes in neuron model parameters to represent the effects of these variants. Results: We present and apply a framework for examining the effects of subtle single nucleotide polymorphisms in ion channel and Ca2+ transporter-encoding genes on neuron excitability. Our analysis indicates that most of the considered SCZ- related genetic variants affect the spiking behavior and intracellular calcium dynamics resulting from summation of inputs across the dendritic tree. Conclusions: Our results suggest that alteration in the ability of a single neuron to integrate the inputs and scale its excitability may constitute a fundamental mechanistic contributor to mental disease, alongside with the previously proposed deficits in synaptic communication and network behavior

    Activity of peroxisomal enzymes, and levels of polyamines in LPA-transgenic mice on two different diets

    Get PDF
    BACKGROUND: In man, elevated levels of plasma lipoprotein (a)(Lp(a)) is a cardiovascular risk factor, and oxidized phospholipids are believed to play a role as modulators of inflammatory processes such as atherosclerosis. Polyamines are potent antioxidants and anti-inflammatory agents. It was therefore of interest to examine polyamines and their metabolism in LPA transgenic mice. Concentration of the polyamines putrescine, spermidine and spermine as well as the activity of peroxisomal polyamine oxidase and two other peroxisomal enzymes, acyl-CoA oxidase and catalase were measured. The mice were fed either a standard diet or a diet high in fat and cholesterol (HFHC). Some of the mice in each feeding group were in addition given aminoguanidine (AG), a specific inhibitor of diamine oxidase, which catalyses degradation of putrescine, and also inhibits non-enzymatic glycosylation of protein which is implicated in the aetiology of atherosclerosis in diabetic patients. Non-transgenic mice were used as controls. RESULTS: Intestinal peroxisomal polyamine oxidase activity was significantly higher in LPA transgenic mice than in the non-transgenic mice, while intestinal peroxisomal catalase activity was significantly lower. Hepatic β-oxidation increased in Lp(a) transgenic mice fed the HFHC diet, but not in those on standard diet. Hepatic spermidine concentration was increased in all mice fed the HFHC diet compared to those fed a standard diet, while spermine concentration was decreased. With exception of the group fed only standard diet, transgenic mice showed a lower degree of hepatic steatosis than non-transgenic mice. AG had no significant effect on hepatic steatosis. CONCLUSION: The present results indicate a connection between peroxisomal enzyme activity and the presence of the human LPA gene in the murine genome. The effect may be a result of changes in oxidative processes in lipid metabolism rather than resulting from a direct effect of the LPA construct on the peroximal gene expression

    Mapping the expression of an ANK3 isoform associated with bipolar disorder in the human brain

    Get PDF
    The gene ankyrin-3 (ANK3) has been consistently associated with bipolar disorder (BD) in several genome-wide association studies (GWAS). The exact molecular mechanisms underlying this genetic association remain unknown. The discovery of a loss-of-function variant (rs41283526*G) in an alternatively spliced exon (ENSE00001786716) with a protective effect, suggested that elevated expression of this particular isoform could be a risk factor for developing the disorder. We developed a novel approach for measuring the expression level of all splice forms at a challenging genetic locus using a combination of droplet digital PCR and high-throughput sequencing of indexed PCR amplicons. The combined method was performed on a large collection of 568 postmortem brain samples of BD and SCZ cases and controls. We also studied the expression of the splice forms in a child-development cohort of 41 healthy males. We found that our approach can quantify the splice forms in brain samples, although with less precision than ddPCR. We detected highly significant differences in expression of splice forms and transcription start sites between brain regions, notably with higher expression of the BD-associated isoform in the corpus callosum compared to frontal tissue (mean fold change = 1.80, p < 1e-4). Although the patients in our sample expressed the BD-associated splice form at a similar level to controls, adolescents in our child-development cohort had a clearly higher expression level than younger children (mean fold change = 1.97, p = 5e-3). These results suggest that this ANK3 splice form may play a role in the myelin maturation of the human brain.publishedVersio

    Bivariate causal mixture model quantifies polygenic overlap between complex traits beyond genetic correlation.

    Get PDF
    Accumulating evidence from genome wide association studies (GWAS) suggests an abundance of shared genetic influences among complex human traits and disorders, such as mental disorders. Here we introduce a statistical tool, MiXeR, which quantifies polygenic overlap irrespective of genetic correlation, using GWAS summary statistics. MiXeR results are presented as a Venn diagram of unique and shared polygenic components across traits. At 90% of SNP-heritability explained for each phenotype, MiXeR estimates that 8.3 K variants causally influence schizophrenia and 6.4 K influence bipolar disorder. Among these variants, 6.2 K are shared between the disorders, which have a high genetic correlation. Further, MiXeR uncovers polygenic overlap between schizophrenia and educational attainment. Despite a genetic correlation close to zero, the phenotypes share 8.3 K causal variants, while 2.5 K additional variants influence only educational attainment. By considering the polygenicity, discoverability and heritability of complex phenotypes, MiXeR analysis may improve our understanding of cross-trait genetic architectures

    Cross-tissue eQTL enrichment of associations in schizophrenia.

    Get PDF
    The genome-wide association study of the Psychiatric Genomics Consortium identified over one hundred schizophrenia susceptibility loci. The number of non-coding variants discovered suggests that gene regulation could mediate the effect of these variants on disease. Expression quantitative trait loci (eQTLs) contribute to variation in levels of mRNA. Given the co-occurrence of schizophrenia and several traits not involving the central nervous system (CNS), we investigated the enrichment of schizophrenia associations among eQTLs for four non-CNS tissues: adipose tissue, epidermal tissue, lymphoblastoid cells and blood. Significant enrichment was seen in eQTLs of all tissues: adipose (β = 0.18, p = 8.8 × 10−06), epidermal (β = 0.12, p = 3.1 × 10−04), lymphoblastoid (β = 0.19, p = 6.2 × 10−08) and blood (β = 0.19, p = 6.4 × 10−06). For comparison, we looked for enrichment of association with traits of known relevance to one or more of these tissues (body mass index, height, rheumatoid arthritis, systolic blood pressure and type-II diabetes) and found that schizophrenia enrichment was of similar scale to that observed when studying diseases in the context of a more likely causal tissue. To further investigate tissue specificity, we looked for differential enrichment of eQTLs with relevant Roadmap affiliation (enhancers and promoters) and varying distance from the transcription start site. Neither factor significantly contributed to the enrichment, suggesting that this is equally distributed in tissue-specific and cross-tissue regulatory elements. Our analyses suggest that functional correlates of schizophrenia risk are prevalent in non-CNS tissues. This could be because of pleiotropy or the effectiveness of variants affecting expression in different contexts. This suggests the utility of large, single-tissue eQTL experiments to increase eQTL discovery power in the study of schizophrenia, in addition to smaller, multiple-tissue approaches. Our results conform to the notion that schizophrenia is a systemic disorder involving many tissues

    Dose-dependent transcriptional effects of lithium and adverse effect burden in a psychiatric cohort

    Get PDF
    Lithium is the first-line treatment for bipolar disorder (BD), but there is a large variation in response rate and adverse effects. Although the molecular effects of lithium have been studied extensively, the specific mechanisms of action remain unclear. In particular, the molecular changes underlying lithium adverse effects are little known. Multiple linear regression analyses of lithium serum concentrations and global gene expression levels in whole blood were carried out using a large case-control sample (n = 1450). Self-reported adverse effects of lithium were assessed with the “Udvalg for Kliniske Undersøgelser” (UKU) adverse effect rating scale, and regression analysis was used to identify significant associations between lithium-related genes and six of the most common adverse effects. Serum concentrations of lithium were significantly associated with the expression levels of 52 genes (FDR < 0.01), largely replicating previous results. We found 32 up-regulated genes and 20 down-regulated genes in lithium users compared to non-users. The down-regulated gene set was enriched for several processes related to the translational machinery. Two adverse effects were significantly associated (p < 0.01) with three or more lithium-associated genes: tremor (FAM13A-AS1, FAR2, ITGAX, RWDD1, and STARD10) and xerostomia (ANKRD13A, FAR2, RPS8, and RWDD1). The adverse effect association with the largest effect was between CAMK1D expression and nausea/vomiting. These results suggest putative transcriptional mechanisms that may predict lithium adverse effects, and could thus have a large potential for informing clinical practice.publishedVersio
    corecore